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CameraVDP: Perceptual Display Assessment with Uncertainty
Estimation via Camera and Visual Difference Prediction
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Fig. 1. CameraVDP pipeline. The camera first captures distortion-free, color-corrected measurements along with their uncertainty covariance (standard
deviations in XYZ space shown). Test and reference measurements are then input to the visual difference predictor to compute a quality score distribution.
Values and uncertainties are jointly propagated at each step. (JOD: just-objectionable-differences, see [Mantiuk et al. 2021, 2024])

Accurate measurement of images produced by electronic displays is critical
for the evaluation of both traditional and computational displays. Tradi-
tional display measurement methods based on sparse radiometric sampling
and fitting a model are inadequate for capturing spatially varying display
artifacts, as they fail to capture high-frequency and pixel-level distortions.
While cameras offer sufficient spatial resolution, they introduce optical, sam-
pling, and photometric distortions. Furthermore, the physical measurement
must be combined with a model of a visual system to assess whether the
distortions are going to be visible. To enable perceptual assessment of dis-
plays, we propose a combination of a camera-based reconstruction pipeline
with a visual difference predictor, which account for both the inaccuracy
of camera measurements and visual difference prediction. The reconstruc-
tion pipeline combines HDR image stacking, MTF inversion, vignetting
correction, geometric undistortion, homography transformation, and color
correction, enabling cameras to function as precise display measurement in-
struments. By incorporating a Visual Difference Predictor (VDP), our system
models the visibility of various stimuli under different viewing conditions
for the human visual system. We validate the proposed CameraVDP frame-
work through three applications: defective pixel detection, color fringing
awareness, and display non-uniformity evaluation. Our uncertainty anal-
ysis framework enables the estimation of the theoretical upper bound for
defect pixel detection performance and provides confidence intervals for
VDP quality scores.
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1 INTRODUCTION
Accurate display evaluation is critical for the design and mainte-
nance of display systems, ensuring reliable visual content reproduc-
tion across diverse usage scenarios while avoiding visible artifacts.
This entails three key requirements: precise display measurement,
perceptual modeling incorporating human visual characteristics,
and uncertainty estimation in both measurement and modeling.

Display measurement must accurately capture patterns of high or
low spatial frequencies to support both pixel-level evaluation (e.g.,
defective pixels) and full-screen assessment (e.g., uniformity). The
ideal solution is to use high-resolution 2D photometers or colorime-
ters; however, such devices are not affordable for small research lab-
oratories, and their processing stack is proprietary. High-resolution
photographic (prosumer) cameras that capture RAW images offer
a practical alternative, but they face several challenges: (1) with
only three color filters, they cannot reconstruct the input optical
power spectrum; (2) camera lenses introduce geometric distortions;
(3) their dynamic range is limited; (4) vignetting introduces non-
uniformity in captured images; (5) and high spatial frequencies are
attenuated or lost due to optical aberrations. To overcome these
limitations, we propose an open-source measurement pipeline for
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mirrorless cameras, customized for the measurement of displays. It
takes advantage of regular display pixel layout and a limited set of
subpixel primaries. The pipeline integrates HDR image stack merg-
ing, MTF inversion, vignetting correction, geometric undistortion,
homography transformation, and color correction.
A display defect or artifact matters only when it is visible to

the human eye. The visibility of such artifacts can be predicted by
visual difference predictors [Daly 1992; Mantiuk et al. 2024]. Those,
however, require perfectly aligned and physically calibrated test
and reference images. The goal of our camera correction pipeline is
to provide such images for visual difference predictors.
A measurement instrument needs to provide an estimate of the

measurement error it makes in order to ensure it is accurate enough
for a given task. We include this capability in our method by an-
alytically modeling the propagation of sensor noise (uncertainty)
through all the stages of camera image correction. Furthermore,
we train multiple-versions of VDP (ColorVideoVDP, [Mantiuk et al.
2024]) on the XR-DAVID dataset to estimate its prediction error
via Monte Carlo simulation. This allows us to use the CameraVDP
to robustly detect defective pixels, estimate the visibility of color
fringing artifacts and display non-uniformity.
In summary, our contributions are as follows:

• An Open Source pipeline1 for correcting distortions intro-
duced by mirrorless cameras, which takes advantage of
display-specific priors. Such a pipeline can be combined
with a VDP to estimate the visibility of the distortions.

• A forward uncertainty propagation framework, incorporat-
ing analytical normal distribution-based estimation for cam-
era measurement uncertainty and Monte Carlo simulation
for VDP uncertainty.

• We demonstrate CameraVDP’s accuracy and the importance
of uncertainty estimation through three applications: defect
pixel detection, color fringing, and uniformity assessment.

2 RELATED WORK
Geometric and radiometric camera calibration. Geometric and ra-
diometric camera calibration integrate models of optics, sensors,
and image processing to bridge the gap between raw sensor mea-
surements and physically accurate image representations. HDR
imaging [Debevec and Malik 2023; Hanji et al. 2020] reconstructs
relative scene radiance from multi-exposure sequences, preserving
details in both shadows and highlights. Color correction [Finlayson
et al. 2015] maps RGB values captured with camera primaries into
trichromatic color values for a given color matching functions (e.g.,
CIE XYZ 1931). Geometric distortion correction [Tang et al. 2017;
Weng et al. 1992] relies on parametric models to rectify lens distor-
tions. The camera spatial frequency response (SFR/MTF) [Burns et al.
2022] (ISO 12233 standard), typically estimated using the slanted-
edge method, quantifies the spatial resolution of imaging systems
and serves as a key metric for optical performance evaluation. This
work integrates these calibration techniques into a unified pipeline,
enabling commercial cameras to accurately capture high-fidelity
content for HDR displays, supporting downstream tasks such as

1The software will be released before the publication of this work.

display uniformity and color fringing assessment. We rely on an ex-
plainable analytical model rather than a differential network [Tseng
et al. 2021], as the former is guaranteed to generalize to any content
and is more appropriate for accurate camera measurements.

Modeling visible differences. Due to the high cost of subjective hu-
man (expert) evaluation, objective computational models of human
visual perception are essential. Accurate models typically incorpo-
rate prior knowledge of the human visual system (HVS) [Schade Sr
1956] and psychophysical data, enabling better generalization to
unseen scenarios. The contrast sensitivity functions (CSFs) char-
acterizes the HVS sensitivity—defined as the inverse of contrast
detection threshold—to variations in color [Ashraf et al. 2024], lu-
minance [Mustonen et al. 1993], area [Rovamo et al. 1993], tem-
poral frequency [Cai et al. 2024; Watson et al. 1986], and spatial
frequency [Barten 2003]. Based on CSF and contrast masking mod-
eling, visual difference predictors (VDPs) such as DCTune [Watson
1993], VDP [Daly 1992], ColorVideoVDP [Mantiuk et al. 2024], and
HDR-VDP-3 [Mantiuk et al. 2023] have been developed to address
more complex image and video content. Existing VDPs require per-
fectly aligned test and reference images, both calibrated in physical
units. Our camera correction pipeline provides such alignment and
calibration, making camera-capture images a suitable input to VDPs.

Uncertainty quantification. Uncertainty is typically categorized into
two types: aleatoric (stochastic) and epistemic (systematic) [Der Ki-
ureghian and Ditlevsen 2009]. Its quantification generally falls into
two approaches: forward propagation and inverse assessment. For-
ward propagation estimates overall system uncertainty based on in-
put variability, usingmethods such asMonte Carlo simulations [Kroese
et al. 2013] and surrogate models [Ranftl et al. 2021]. Inverse assess-
ment corrects model bias or calibrates parameters using observed
data, exemplified by modular [Kennedy and O’Hagan 2001] and
fully Bayesian [Bayarri et al. 2009] approaches. In computational
imaging, common approaches to uncertainty quantification include
Markov Chain Monte Carlo (MCMC) sampling [Bardsley 2012; Brod-
erick et al. 2020], Bayesian hypothesis testing [Repetti et al. 2019],
variational inference [Arras et al. 2019; Blei et al. 2017; Ekmekci and
Cetin 2021; Rezende and Mohamed 2015; Sun and Bouman 2021],
and Bayesian neural networks [Ongie et al. 2020; Xue et al. 2019].
However, most of these methods target deep learning–based re-

construction tasks. While Hagemann et al. [2022] addresses bias and
uncertainty in camera calibration via a resampling-based estima-
tor, a unified framework for uncertainty propagation through HDR
merging, geometric undistortion, homography transformation, and
color calibration remains absent. Moreover, uncertainty modeling
is entirely unexplored in perception modeling.

3 METHODOLOGY
Our approach combines camera-based measurements with a visual
difference predictor (VDP). The goal of the camera measurements is
to achieve sufficient accuracy by correcting the inherent distortions
of standard cameras. The complete workflow, shown in Figure 2,
comprises six key steps. Based on these measurements, the VDP in-
corporates a model of human vision to convert physical differences
into perceived visual differences. As with any physical measurement,

2
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including those obtained using camera sensors, measurement un-
certainty is inevitable. Additionally, the VDP introduces prediction
uncertainty due to its dependence on the training data. A combined
estimation of these uncertainties is essential to assess the reliability
of the predicted values.

3.1 Camera correction
Our camera measurement correction pipeline is designed for cam-
eras equipped with pixel-shift (sensor-shift) feature, which increases
resolution and reduces noise and demosaicing artifacts. For that rea-
son, we do not model demosaicing in our pipeline. We also assume
that the measured display has three primaries (i.e., RGB subpixels).

Uncertainty estimation is based on three assumptions: the noise
is independent across (1) exposures, (2) individual pixels, and (3)
RGGB camera subpixels.
Our derivation involves extensive notation, with full definitions

provided in Table S1 (supplementary materials).

HDR Image Stack Merging and Noise Model. The dynamic
range of HDR displays often exceeds that of camera sensors, neces-
sitating the capture of multiple exposures. Merging exposures can
also reduce noise (via averaging). The RAW (digital) sensor values I
for a pixel p ∈ R2 can be modeled as [Aguerrebere et al. 2014]:

I𝑐 (p) ∼ 𝑘𝑐 {Pois((Ψ𝑐 (p)+𝑑)𝑡)𝑔+N(0, 𝜎2
read,c)𝑔+N(0, 𝜎2

adc,c)}, (1)

where 𝑐 ∈ {r, g, b} is the color channel index, 𝑡 is the exposure time,
𝑔 = ISO/100 is sensor’s gain, 𝑑 is the dark current noise, and Ψ is
the scene radiance. 𝑘𝑐 , 𝜎2

read,c and 𝜎
2
adc,c are the noise parameters,

which we estimate in Section 4.1. We measured the dark noise 𝑑
for our test camera by capturing 𝐼 with the lens blocked (Ψ ≈ 0) at
room temperature. As the dark noise remained below 0.1% within
our exposure range, it was omitted from further analysis.
Before merging a stack of RAW exposures 𝑖 = 1...𝑁 , we need to

compensate for differences in exposure time and gain. The relative
radiance X𝑐 (p) is defined as X𝑐 (p) := I𝑐 (p)

𝑡𝑔 . We can formulate the
reconstruction of the scene radiance by incorporating the noise
model from Eq. (1) and solving for the maximum likelihood esti-
mation (MLE) [Aguerrebere et al. 2014]. However, solving for MLE
is impractical for large sets of high-resolution images. As noted
by Hanji et al. [2020], photon noise dominates in modern cameras,
especially at long exposure times used for measurements. Therefore,
we can assume a simplified noise model X𝑐 (p) ∼ 𝑘𝑐Pois(Ψ𝑐 (p)𝑡)/𝑡
and the corresponding log-likelihood function:

ℓ (Ψ𝑐 (p) ) =
𝑁∑︁
𝑖=1

(
𝑥𝑖,𝑐𝑡𝑖 log (𝜙𝑐 (p)𝑡𝑖 )

𝑘𝑐
− 𝜙𝑐 (p)𝑡𝑖 − log

((
𝑥𝑖,𝑐𝑡𝑖

𝑘𝑐

)
!
))

. (2)

The above likelihood has a closed-form estimator [Hanji et al. 2020]:

Ψ𝑐 (p) =
∑𝑁
𝑖=1 𝑘𝑐𝑥𝑖,𝑐 (p)𝑡𝑖∑𝑁

𝑖=1 𝑡𝑖
, (3)

where 𝑥𝑖,𝑐 denotes a single measurement (𝑖 = 1...𝑁 ) of the random
variable X𝑐 . ℓ (𝜙𝑐 (p)) was introduced to simplify the notation.

Given the sufficient photon count received by the camera during
exposure under typical display luminance, the Poisson distribution
can be approximated by a normal distribution. Then, the relative

radiance X𝑐 (p) follows a normal distribution:

X𝑐 (p) ∼ N
(
𝑘𝑐Ψ𝑐 (p),

𝑘2
𝑐Ψ𝑐 (p)

𝑡
+
𝑘2
𝑐𝜎

2
read,c
𝑡2 +

𝑘2
𝑐𝜎

2
adc,c

𝑡2𝑔2

)
. (4)

The estimated distribution of radiance Ψ̂ from exposure stack is:

Ψ̂𝑐 (p) ∼ N
(∑𝑁

𝑖=1 𝑘𝑐𝑥𝑖,𝑐 (p)𝑡𝑖∑𝑁
𝑖=1 𝑡𝑖

,

∑𝑁
𝑖=1 [𝑘2

𝑐𝑥𝑖,𝑐 (p)𝑡𝑖 + 𝑘2
𝑐𝜎

2
read,𝑐 + 𝑘2

𝑐𝜎
2
adc,𝑐/𝑔

2
𝑖
]

(∑𝑁
𝑖=1 𝑡𝑖 )2

)
.

(5)
MTF Inversion. Due to lens aberrations, imperfect focus and lens

glare, imaging systems cannot accurately reproduce high spatial fre-
quency details, resulting in blur. The Modulation Transfer Function
(MTF), also known as the Spatial Frequency Response (SFR), char-
acterizes an imaging system’s ability to resolve fine spatial details.
Classical measurement methods include edge-based (e-SFR) [Kerr
2024] and sinewave-based analysis (s-SFR) [Loebich et al. 2007].

The scene radiance Ψ𝑐 (p) affected by blur and glare can be mod-
eled as the convolution of the clean scene radiance L𝑀𝑐 (p) and the
camera point spread function (PSF) 𝑃 (p), plus noise 𝜂 (p):

Ψ𝑐 (p) = (L𝑀𝑐 ∗ 𝑃) (p) + 𝜂 (p), (6)

where ∗ denotes convolution. The MTF𝑀 (𝝎) is the modulus of the
Fourier transform of the PSF 𝑃 (p) [Burns et al. 2022], 𝝎 ∈ R2 is
spatial frequency in cycles-per-pixel. Taking the Fourier transform
F on both sides of Eq. (6) yields:

F (Ψ𝑐 ) = F (L𝑀𝑐 )𝑀 (𝝎) + 𝜂′ (𝝎), (7)

Considering the noise, we use Wiener deconvolution to obtain the
deglared and deblurred estimate of L𝑀𝑐 :

L̂𝑀𝑐 (p) = F −1
(
F (Ψ̂𝑐 )𝐺𝑐 (𝝎)

)
(p) , (8)

where the Wiener filter is (∗ is the conjugate operator):

𝐺𝑐 (𝝎) =
𝑀∗ (𝝎)𝑆Ψ̂𝑐

(𝝎)
|𝑀 (𝝎) |2𝑆Ψ̂𝑐

(𝝎) + 𝑁Ψ̂𝑐
(𝝎)

. (9)

𝑆Ψ̂𝑐
(𝝎) and 𝑁Ψ̂𝑐

(𝝎) represent the power spectral densities (PSD)
of the signal and noise, see supplementary materials for details.

The MTF was assumed to be isotropic. We measured𝑀 (𝝎) using
the slanted-edge method (Figure 2, column 2), and fitted using:

𝑀 ′ (𝝎 ) = 𝑎1 exp

(
−

(
𝝎 − 𝑏1
𝑐1

)2
)
+ 𝑎2 exp

(
−

(
𝝎 − 𝑏2 )

𝑐2

)2
)
, (10)

where 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2 are fitting parameters. To suppress noise
amplification,𝑀 (𝝎) = max(𝑀′ (𝝎), 0.5), as shown in Figure 4.

Since the Fourier transform is a linear operation, 𝐿̂𝑐 (p) follows a
normal distribution. The mean of L̂𝑀𝑐 (p) is given by Eq. (8):

𝜇L̂𝑀𝑐
(p) = F −1 (

F (𝜇Ψ𝑐
))𝐺 (𝝎)

)
(p) , (11)

Under the assumption of spatial white noise, the variance is:

𝜎2
L̂𝑀𝑐

(p) ≈ 𝜎2
Ψ𝑐

(p)
∬

|𝐺 (𝝎) |2 𝑑𝝎 . (12)

The derivation can be found in Section S1 of the supplementary.

3
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Fig. 2. The complete camera measurement pipeline is shown from left to right, with each column representing a key step and the bottom row illustrating
transformation examples. Column 1: HDR acquisition via merging multi-exposure images (4 exposure levels). Column 2: MTF inversion to correct lens
aberrations. Column 3: Vignetting correction, exemplified by the vignetting map of the Sony 𝛼7R III with FE 1.8/35 lens. Column 4: Intrinsic and distortion
parameter estimation using full-screen checkerboard patterns for geometric undistortion (crop empty edges caused by undistortion). Column 5: Homography
estimation of extrinsic parameters using full-screen OpenCV ArUco markers. The display pixel oversampling factor 𝑜 denotes the side length (in image pixels)
of the square formed by the centers of four original display pixels (red squares) in the oversampled image after homography transformation. Examples with
𝑜 = 3, 5 are shown, where red squares indicate display pixel centers. Column 6: Color correction by mapping camera RGB to measured XYZ.

Vignetting Correction. Vignetting refers to the reduction in
image brightness toward the edges compared to the center. It can be
categorized into mechanical, optical, natural and pixel vignetting,
and is associated with factors such as partial occlusion at the lens
periphery and the cosine fourth-power falloff [Asada et al. 1996].

Althoughmany reference-free vignetting correctionmethods [Kang
andWeiss 2000; Zheng et al. 2008] exist, flat-field correction remains
the most widely used approach. It involves capturing the image I of
a uniformly illuminated and color-consistent light source Iflat:

I𝑐 (p) = V𝑐 (p)Iflat,𝑐 + 𝜖𝑐 (p), (13)

where V𝑐 (p) ∈ (0, 1] is the vignetting function and 𝜖𝑐 (p) is noise.
To compensate for the impact of dust in the optical system, the
vignetting function is estimated without smoothing:

V̂𝑐 (p) = L̂𝑀𝑐 (p)/max(L̂𝑀𝑐 (p)). (14)

The vignetting correction result is:

L̂𝑉𝑐 (p) ∼ N
(
𝜇 (𝐿̂𝑐 (p))
𝑉𝑐 (p)

,
𝜎2 (𝐿̂𝑐 (p))
𝑉 2
𝑐 (p)

)
. (15)

Geometric Undistortion and Homography Transformation.
We aim to find a mapping𝑚 : s → p, from screen pixel coordinates
s to camera pixel coordinates p, such that:

L̂𝐷𝑐 (s) =
∑︁
𝛿∈Ω

L̂𝑉𝑐 (𝑚(s) + 𝛿)𝑅(𝛿). (16)

where 𝑅(𝛿) is the resampling kernel and Ω is the neighborhood of
a pixel.𝑚 is composed of homography ℎ : s → g and geometric
undistortion 𝑢 : g → p, where g is the undistorted coordinate.

Homography transformation requires displayingmultiple OpenCV
ArUco markers [Garrido-Jurado et al. 2014] on screen (see Figure 2,
column 5) to obtain the homography matrix H ∈ R3×3. Then the
screen coordinate can be mapped to an undistorted coordinate with:

gℎ = Hsℎ, (17)

where gℎ, sℎ are the homogeneous coordinates of g and s.
To support applications requiring subpixel color structures (e.g.,

chromatic aberration), display pixels are supersampled with a factor
of 𝑜 (≥ 3), as shown in the fifth column of Figure 2.

For geometric undistortion, we adopt the Brown-Conrady distor-
tion model, comprising radial and tangential distortions:

𝑢 (g) = g·
(
1 + 𝑘1 ∥g∥2 + 𝑘2 ∥g∥4 + 𝑘3 ∥g∥6

)
+
[
2𝑝1g𝑥g𝑦 + 𝑝2

(
∥g∥2 + 2g2

𝑥

)
𝑝1

(
∥g∥2 + 2g2

𝑦

)
+ 2𝑝2g𝑥g𝑦

]
,

(18)
where 𝑘1, 𝑘2, 𝑘3 are the radial distortion parameters, 𝑝1, 𝑝2 are the
tangential distortion parameters, ∥g∥2 = g2

𝑥 + g2
𝑦 .

Using OpenCV for camera calibration on the test display showing
a checkerboard pattern, we obtained the intrinsic camera matrix
and distortion parameters. Note that the origin of s is at the display
center, with the 𝑥-axis pointing right and the𝑦-axis pointing upward,
using pixel pitch as the unit.

Additionally, we found that when multiple camera pixels capture
a single display pixel (with oversampling), OpenCV fails to accu-
rately detect the corner points. To address this, we first identify all
display pixel coordinates via local maxima. Then, the coordinates
of the detected checkerboard corners are updated to the average
of the coordinates of the two white display pixels (not in the same
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checkerboard block) closest to the original detected corner position.
(see Figure 2, column 4). When calibrating for the Sony FE 2.8/90
lens on the Eizo display, our improved method reduced the repro-
jection error from 0.315 to 0.018, achieving an 18-fold improvement
compared to the OpenCV calibration (with subpixel refinement).
When estimating uncertainty, the resampling operation intro-

duces local averaging that compromises the independence of neigh-
boring pixels. To simplify subsequent analysis, we conservatively
estimate the variance by resampling it in the same manner as the
mean (Eq. (16)). Although this may slightly overestimate variance
in some regions, it preserves the pixel independence assumption,
facilitating Monte Carlo sampling in downstream visual difference
predictors.

Color Correction. Cameras cannot capture colors identical to
those perceived by the human eye due to differences in spectral
sensitivity between the eye and the camera sensor, making color cor-
rection essential [Finlayson et al. 2015]. The radiance L̂𝐷𝑐 recorded
by the camera for a single display pixel is:

L̂𝐷𝑐 =
∑︁
k

𝑃k

∫
𝜆

𝐸k (𝜆)𝐶𝑐 (𝜆)𝑑𝜆, (19)

where 𝜆 is the wavelength, 𝐸k (𝜆) is the spectral power distribution
(SPD) of subpixel k ∈ {R,G,B} at unit intensity, 𝑃k is the linearized
subpixel value, and𝐶𝑐 (𝜆) denotes the spectral sensitivity of camera
channel 𝑐 ∈ {r, g, b}. Similarly, the trichromatic CIE XYZ value
(related to cone responses) can be expressed as:

Y =
∑︁
k

𝑃k

∫
𝜆

𝐸k (𝜆)S̄(𝜆)𝑑𝜆, (20)

where Y = [𝑋,𝑌, 𝑍 ]′ and S̄(𝜆) = [𝑥 (𝜆), 𝑦 (𝜆), 𝑧 (𝜆)]⊤ are the CIE
1931 standard observer color matching functions (CMFs).

For a display with three color subpixels, there exists a unique
transformation matrix M ∈ R3×3 such that:

Ŷ(s) = ML̂𝐷 (s) . (21)

To estimate uncertainty, we need to model covariance as the color
channels are no longer independent. For a three-primary (RGB)
display:

ΣŶ (s) = MΣL̂𝐷 (s)M⊤, (22)
where Σ is the covariance matrix. See the supplementary material
Section S2 for displays with more than three primaries.

3.2 Visual difference predictor
The visual difference predictor (VDP) is a full-reference metric oper-
ating on images represented in physical units (luminance, radiance,
trichromatic values), which can estimate perceptual differences be-
tween test and reference images. We adopt the backbone architec-
ture of ColorVideoVDP [Mantiuk et al. 2024] as our VDP (Figure 3).
The inputs are color-corrected camera measurements of the test and
reference images (in XYZ space), which are first transformed into
the DKL color space (color opponent stage). Each channel (achro-
matic, RG, YV) is then decomposed into spatial frequency-selective
bands using a Laplacian pyramid. The contrast encoded in the bands
is used to account for spatio-chromatic contrast sensitivity and con-
trast masking. Finally, the perceived contrast differences are pooled

into a JOD quality score and a corresponding heatmap. For further
details, please refer to the original paper [Mantiuk et al. 2024].
The visual difference predictor involves complex computations,

making analytical propagation of uncertainty unfeasible. Addition-
ally, both aleatoric and epistemic uncertainties need to be considered
during propagation, corresponding to the image measurement un-
certainties from the input test and reference (as discussed in the
previous section), and the uncertainty in the parameters of the
ColorVideoVDP itself. Therefore, we directly employ Monte Carlo
sampling to estimate the uncertainties.
Means and uncertainties of test and reference images derived

from the camera measurement pipeline output (X̂) and used to
sample 100 test images. To estimate VDP uncertainty, we randomly
partition the XR-DAVID dataset [Mantiuk et al. 2024] into 21 train-
validation splits and train the model for 6 epochs on each, producing
21 distinct parameter sets. Each configuration is then evaluated on
100 randomly sampled test-reference image pairs, yielding 2100 JOD
estimates. The distribution of these JOD values is then treated as
the outcome of uncertainty propagation through VDP.

4 APPLICATIONS AND EXPERIMENTS
This section first describes the implementation of camera correc-
tion, then uses Monte Carlo simulation to validate the theoretical
uncertainty derivation, and finally introduces three applications:
defective pixel detection, color fringing, and uniformity perception.

Measurements were conducted on an Eizo ColorEdge CS2740 dis-
play (3840×2160) using a Sony𝛼7R III (ILCE-7RM3) camera equipped
with Sony FE 1.8/35 and Sony FE 2.8/90 Macro G OSS lenses. To
reduce Bayer demosaicing artifacts, pixel shift multi-shot mode
(4-shot) was employed. All analyses were performed on RAW im-
ages (.ARQ and .ARW) processed with rawpy. Measurements were
acquired at the camera’s full resolution (7968×5320).

4.1 Camera Correction Implementation
Camera noise model parameters. The uncertainty analysis be-

gins with Eq. (1), where we need to estimate 𝑘𝑐 , 𝜎2
read,c, and 𝜎

2
adc,c.

From Eq. (1), we have:

𝜎2
I𝑐 (p) = 𝜇I𝑐 (p)𝑔𝑘𝑐 + 𝜎2

read,c𝑔
2𝑘2

𝑐 + 𝜎2
adc,c𝑘

2
𝑐 . (23)

Parameter estimation has two stages: (1) capture images of uniform
field of varying luminance and fit the linear relationship between
𝜎2

I𝑐
(p)) and 𝜇I𝑐 (p) to estimate 𝑘𝑐 ; (2) with the camera lens covered

(𝜇I𝑐 (p) → 0), vary 𝑔 (ISO/100) and fit a quadratic function between
𝜎2

I𝑐
(p)) and 𝑔 to estimate 𝜎2

read,c and 𝜎
2
adc,c. Results are in Figure 5.

Vignetting. Without a uniform reference (e.g., an integrating
sphere), we employed the Eizo display with uniformity correction
as a flat-field source. Images were captured using a defocused lens at
close range, utilizing only the display’s central region. HDR stacks
were used to reduce 𝜖𝑐 (p), and averaging across multiple distances
removed subpixel artifacts. V̂𝑐 (p) are shown in Figure 2, column 3.

Color Correction Matrix. To find color correction matrix M, we
measured trichromatic values of 30 colors (X-Rite 24-color Col-
orChecker and full/half-intensity RGB, Figure 1) with JETI Spec-
bos 1211 spectroradiometer in the center of the display. The color
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Fig. 3. Visual difference predictor with uncertainty analysis. Input camera measurements (mean and covariance) are transformed to DKL space and used to
generate a sample of 100 test images. The VDP pipeline evaluates the difference 21 times, each time using a different set of calibration parameters, to produce
the distribution of JOD values and local differences encoded in a heatmap.

Table 1. Results of display defective pixel detection and ablation study of
camera measurement pipeline. The bottom row shows our complete pipeline
(no color correction). Best PR𝑎𝑢𝑐 under each condition is highlighted. (HDR:
HDR Image Stack Merging. MTF: MTF Inversion. VC: Vignetting Correction.
GU: Geometric Undistortion. HT: Homography Transformation.)

Contrast 𝑐𝑑𝑝 1 0.2
Size 𝑎d 4 2 1 4 2 1
HDR-HT 0.967 0.946 0.963 0.987 0.875 0.195

HDR-MTF-HT 0.964 0.945 0.978 0.988 0.885 0.252
HDR-MTF-VC-HT 0.962 0.944 0.976 0.988 0.889 0.213

HDR-MTF-VC-GU-HT 1.000 1.000 0.996 1.000 0.908 0.282

patches were displayed and measured sequentially. Representative
color correction results (Sony FE 1.8/35 lens + Eizo display) are
shown in Figure 2, column 6. The method achieves high accuracy,
with mean color difference CIE Δ𝐸2000 = 0.308 between the pre-
dicted and ground-truth XYZ values.

4.2 Monte Carlo validation of uncertainty propagation
To validate our analytical uncertainty model from Section 3, we
compare it with Monte Carlo simulations. Given the requirement
for full-resolution data, this validation is computationally intensive.
Using 1000 samples (with mean and variance of HDR-merged cap-
tures), we compare theoretical and simulated results in Figure 6,
confirming good accuracy of our uncertainty model.

4.3 Detecting defective pixels on a display
Prolonged use of displays may cause subpixel degradation, such as
OLED burn-in. Factory defects mechanical damage can also cause
defective pixels. CameraVDP precisely captures per-pixel luminance
distributions and enables accurate defective pixel detection.

Test patterns. Test patterns simulate a display with defective pix-
els. Each pattern consists of a uniform white image (pixel value [255,
255, 255]) displayed on a 3840 × 2160 screen, containing 100 darker
square patches simulating defective pixels. All patches within a
stimulus share the same edge length 𝑎d ∈ {1, 2, 4} (display pixels)
and Weber contrast 𝑐d ∈ {0.2, 1} (corresponding to sRGB-encoded
pixel values of 231 and 0) relative to the background. Varying 𝑎d, 𝑐d
yields 6 unique test patterns. Experiments were conducted using
the Eizo display, the Sony 𝛼7R III camera with the FE 1.8/35 lens.

Detection method. Given parameters 𝑎d, 𝑐d, display size𝑤d × ℎd
(display pixels), and the oversampling factor 𝑜 used in homography
transformation, the measurement resolution is ((𝑜 − 1)𝑤d + 1) ×

((𝑜 − 1)ℎd + 1) (image pixels). The mean map Mp is computed by
averaging the RGB channels of the output from Eq. (16) (no color
correction), then convolving with a box filter of size (𝑜 − 1)𝑎d − 1.
Similarly, a background mean map Mb is obtained using a box filter
size of 10(𝑜 − 1) + 1. A region is labeled defective if Mp < Mb𝐷thr,
where detection threshold 𝐷thr ∈ [0, 1]. Redundant detections are
removed using non-maximum suppression (NMS) [Canny 1986].
Evaluation metrics. The objective is to identify defective pixels

with minimal number of false positives and negatives. The evalu-
ation metric is the area under the precision-recall curve (PR𝑎𝑢𝑐 ),
computed across varying detection thresholds 𝐷thr. A detection is
considered correct if the predicted center lies within a one-display-
pixel radius of the ground truth center.

Results. Experimental results in the bottom row of Table 1 show
that for 𝑎d ≥ 2, our method achieves near-perfect PR𝑎𝑢𝑐 (≈1). Under
extreme conditions (𝑎d = 1, 𝑐d = 0.2), PR𝑎𝑢𝑐 decreases due to noise
(more false positives) as discussed below. Thus, we recommend
placing the camera closer to the display to enlarge low-contrast
defective pixels in practical use.

Ablation studies. The contribution of each component of our cam-
era correction pipeline to the accuracy of detection is reported
in Table 1. The baseline HDR-HT method showed the poorest per-
formance. Incorporating the MTF inversion module (Wiener de-
convolution) in HDR-MTF-HT significantly improved results for
small defect sizes, confirming the MTF module’s effectiveness and
highlighting glare and blur as key challenges. Vignetting correction
(VC) had negligible impact since detection uses relative local back-
ground to compensate for vignetting. Geometric undistortion (GU)
enabled the full pipeline to achieve near-perfect performance on
larger defect sizes.

Uncertainty (Noise) Model. In practice, ground truth is unavail-
able—defect pixel number, location, and contrast are unknown. A
high detection threshold 𝐷thr (near 1) risks excessive false posi-
tives, while a low threshold may miss low-contrast defects. Our
uncertainty map can be used to estimate a false positive count 𝑁fp,
offering a reliability metric for detection outcomes.
Since Mp already contains noise, we use Mb (computed with

a larger box filter and thus assumed to be less affected by noise)
for false positive estimation. We consider only pixels with 𝑎d = 1
and estimate the probability that each display pixel s with 𝜇 (s) =
Mb (s), 𝜎2 (s) =

∑
𝑐 𝜎

2
𝑐 (L̂𝐷𝑐 (s) )

9 satisfies condition M′
p (s) < Mb (s)𝐷thr

(false positive). Note that M′
p (s) is a sample drawn from normal

distribution with 𝜇 (s) and 𝜎2 (s), and is independent of Mp (s). Then,
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for pixel s, the z-score is given by:

𝑧 (s) = (𝐷thr − 1) Mb (s)
𝜎 (s) (24)

We can then compute the cumulative distribution function (CDF),
representing the probability that the pixel becomes a false positive:

Φ(𝑧 (s)) = 1
2

(
1 + erf

(
𝑧 (s)
√

2

))
, (25)

where erf is the Gauss error function. The final estimate of the
number of false positive detections is:

𝑁fp =
∑︁
s

Φ(𝑧 (s)), (26)

Experimental results are shown in Figure 9. Without any ground
truth, our method accurately predicts the number of false positives
and, therefore, can be used to select the desired detection threshold.

4.4 Display color fringing
RGB subpixel layouts often introduce color fringing artifacts like
red-blue edges around white text. This section evaluates whether
CameraVDP can accurately predict the visibility of such artifacts.

Stimulus. To accurately reproduce color fringing, we displayed
the letters“C” and “Y” on the Eizo display and captured themwith the
Sony𝛼7R III and FE 2.8/90 lens. The experiment included a test image
(with color fringing) and a reference (without fringing). Because the
pixel density of our display was too high to see color fringing, we
simulated a lower resolution display (e.g., VR headset) by enlarging
the captured image 4× in both dimensions. The reference image
was generated by converting the test image to grayscale. Test and
reference images are shown in Figure 7.

Experimental procedure. We investigated the effect of viewing
distance on color fringing visibility using a two-alternative forced
choice (2AFC) protocol. Stimuli were displayed on the Eizo monitor
mounted on a motorized movable rail [Anonymous 2025]. In each
trial, the display was moved to one of five viewing distances [1.00,
1.14, 1.33, 1.60, 2.00] meters, and the corresponding pixel-per-degree
resolutions (with the simulated 4×4 pixels) are [28.9, 32.8, 38.0, 45.4,
56.5]. Each condition was presented 20 times per observer in random
order (of distances and “C”/“Y” letters). Each trial consisted of two
intervals, one with color fringing (test) and one without (reference),
each lasting 2 s, separated by 0.5 s of random noise. Observers were
asked to select the interval containing color fringing.

Participants. We recruited 8 participants (5 male, 3 female) aged
20–35, all of whom passed a color vision and acuity screening. The
experiment was approved by the departmental ethics committee.

Results and discussion. The results are shown in Figure 10, includ-
ing both human data and model predictions. To account for display
characteristics, the test and reference patterns were re-captured
using the Sony 𝛼7R III camera with the FE 1.8/35 lens before being
processed by the visual difference predictor to obtain JOD values,
which were then converted to detection probabilities 2. These consti-
tute the model predictions, shown as purple and green lines (mean)
2Since the VDP was trained on full-field images, but color fringing stimuli are very
small, JOD values were rescaled as JODscale = min(11.35 − 20 × (10 − JOD), 10) .

and shaded areas (uncertainty) in Figure 10. Human observer data
are black lines in the right panel. The results demonstrate that our
pipeline accurately predicts human detection probabilities of color
fringing artifacts, with model uncertainty encompassing the 95%
confidence interval of human results.

4.5 Display non-uniformity assessment
Section 4.3 examined high-frequency non-uniformities (defective
pixels), whereas low-frequency artifacts (e.g., center-bright vignetting
from backlight unevenness) are also common. This section evalu-
ates whether CameraVDP can accurately predict their visibility as a
function of viewing distance.

Stimulus. We pre-measured the Eizo display’s non-uniformity
𝐿max−𝐿min
𝐿max+𝐿min

= 1.94%, which was sufficient for the experiment. The
test stimulus was a 2D elliptical Gaussian with a contrast of 0.1
and a mean of 142.5 cd/m2, with horizontal and vertical standard
deviations set to half of the width and height, as shown in Figure 8.
The reference was a uniform field matched in mean luminance. The
display was driven by a 12-bit per color channel signal (10-bit native
+ 2 bits simulated with spatio-temporal dithering) to avoid banding.

Experimental procedure and participants. The experimental proce-
dure and participants were nearly identical to those in Section 4.4,
with two exceptions: (1) viewing distances of [0.50, 0.62, 0.80, 1.14,
2.00] meters were used; (2) to prevent detection based on luminance
differences rather than non-uniformity, the reference luminance
was randomly scaled by a factor in the range from 0.8 to 1.2.

Results and discussion. The results are presented in Figure 11.
Overall, the findings indicate that display non-uniformities are gen-
erally perceived more strongly at greater viewing distances, as the
increase in viewing distance corresponds to higher spatial frequen-
cies, to which the human visual system is more sensitive (see Fig-
ure 8; this can also be observed by zooming the page in and out).
CameraVDP accurately predicted this effect.

5 CONCLUSIONS
A consumer-grade camera can become an accurate measurement
instrument when properly calibrated. Here, we calibrate the camera
specifically for the task of capturing a display, so that we can take
advantage of the pixel grid to refine geometric calibration and ensure
accurate color measurement. Because not every display artifact is
going to be visible, we integrate our camera correction pipeline
with a visual difference predictor. Finally, our measurements come
with an estimate of uncertainty, which is introduced by sensor noise
and VDPs prediction error. Our measurement technique can be
used across a range of (computational) display applications, from
detecting defects to evaluating the visibility of display artifacts.

Limitations. CameraVDP has three main limitations: (1) it is appli-
cable only to cameras that are good enough to be calibratable; (2) it
requires cameras with pixel-shift capability, which does not rely on
demosaicing for color reconstruction. Demosaicing may introduce
inter-pixel dependencies that violate the assumption of statistical
independence; (2) the increase of uncertainty due to the MTF inver-
sion is approximated assuming white noise, which may not hold for
scenes with large variation of intensity.
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S1 UNCERTAINTY PROPAGATION IN MTF INVERSION
In the main text, we provide only a brief derivation and result of the
MTF inversion. Here, we present the complete derivation and proof.

The scene radiance Ψ𝑐 (p) affected by blur and glare can be mod-
eled as the convolution of the clean scene radiance L𝑀𝑐 (p) and the
camera point spread function (PSF) 𝑃 (p), plus noise 𝜂 (p):

Ψ𝑐 (p) = (L𝑀𝑐 ∗ 𝑃) (p) + 𝜂 (p), (S1)

where ∗ denotes convolution. The MTF𝑀 (𝝎) is the modulus of the
Fourier transform of the PSF 𝑃p) [Burns et al. 2022], 𝝎 is spatial
frequency in cycles-per-pixel. Taking the Fourier transform F on
both sides of Eq. (S1) yields:

F (Ψ𝑐 ) = F (L𝑀𝑐 )𝑀 (𝝎) + 𝜂′ (𝝎), (S2)

Considering the noise, we use Wiener deconvolution to obtain the
deglared and deblurred estimate of L𝑀𝑐 :

L̂𝑀𝑐 (p) = F −1
(
F

(
Ψ̂𝑐

)
𝐺𝑐 (𝝎)

)
(p) , (S3)

where the Wiener filter is (∗ is the conjugate operator):

𝐺𝑐 (𝝎) =
𝑀∗ (𝝎)𝑆Ψ̂𝑐

(𝝎)
|𝑀 (𝝎) |2𝑆Ψ̂𝑐

(𝝎) + 𝑁Ψ̂𝑐
(𝝎)

. (S4)
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𝑆Ψ̂𝑐
(𝝎) and 𝑁Ψ̂𝑐

(𝝎) represent the power spectral densities (PSD)
of the signal SΨ̂𝑐

(p) and noise NΨ̂𝑐
(p):

Ψ̂𝑐 (p) = SΨ̂𝑐
(p) + NΨ̂𝑐

(p) , (S5)

SΨ̂𝑐
(p) ∼ 𝑁

(
𝜇Ψ̂𝑐

(p), 0
)
, (S6)

NΨ̂𝑐
(p) ∼ 𝑁

(
0, 𝜎2

Ψ̂𝑐

(p)
)
. (S7)

Thus 𝑆Ψ̂𝑐
(𝝎) can be directly computed:

𝑆Ψ̂𝑐
(𝝎) =

���F (
SΨ̂𝑐

)���2 =
��F (

𝜇Ψ𝑐

) ��2 . (S8)

However, since NΨ̂𝑐
(p) is a random variable and not directly ac-

cessible, the computation of 𝑁Ψ̂𝑐
(𝝎) differs accordingly. The noise

NΨ̂𝑐
(p) is assumed to be white in the spatial frequency domain

(i.e., equal magnitude in all frequencies). According to Parseval’s
theorem, the energy of the noise signal in the spatial domain equals
that in the frequency domain, so:

𝑁Ψ̂𝑐
(𝝎) ≈ 𝜎2

Ψ̂𝑐

(p) . (S9)

For simplicity, the MTF was assumed to be isotropic. We measured
𝑀 (𝝎) using the slanted-edge method, as shown in the second col-
umn of Figure M2 (main text). Specifically, images were captured
of the diagonal black-white edge at the center of a Siemens star
rotated by 45◦. The MTF was fitted using:

𝑀′ (𝝎) = 𝑎1 exp
(
−

(
𝝎 − 𝑏1
𝑐1

)2)
+ 𝑎2 exp

(
−

(
𝝎 − 𝑏2)

𝑐2

)2)
, (S10)

where 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2 are fitting parameters. To suppress noise
amplification,𝑀 (𝝎) = max(𝑀′ (𝝎), 0.5), as shown in Figure M4.

Since the Fourier transform is a linear operation, 𝐿̂𝑐 (p) follows a
normal distribution. The mean of L̂𝑀𝑐 (p) is given by Eq. (S3):

𝜇L̂𝑀𝑐
(p) = F −1 (

F
(
𝜇Ψ𝑐

)
𝐺 (𝝎)

)
(p) , (S11)

Now we aim to compute the variance 𝜎2 (L̂𝑀𝑐 (p)). Our analysis
relies on the following assumptions: (1) the camera PSF 𝑃 decays
rapidly in spatial domain; (2) the noise follows a white noise distri-
bution; and (3) local variance is approximately uniform within small
pixel neighborhoods. These assumptions hold for most well-focused
cameras and typical scenes.

Revisiting Eq. (S1), since 𝑃 decays rapidly in spatial domain, the
following expression still holds within the neighborhood of pixel p:

Ψ′
𝑐 (p) = (L′𝑀𝑐 ∗ 𝑃) (p) + 𝜂 (p), (S12)

where ′ indicates values within the neighborhood of pixel p.
From Eq. (S3), we have:

F
(
L̂′𝑀𝑐

)
(𝝎) =

(
F

(
Ψ̂′
𝑐

)
𝐺

)
(𝝎) . (S13)
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Table S1. Table of key symbol definitions used in the main text.

Variable Symbols Definition
𝑎d Side length of the simulated defective pixel in the defective pixel detection experiment, expressed in units of display pixel size.
𝑐 Color channels in the camera RAW image, 𝑐 ∈ {r, g, b}.
𝑐d Weber contrast of the simulated defective pixel.
𝐶𝑐 The spectral sensitivity of camera channel 𝑐 ∈ {r, g, b}.
𝑑 Camera dark noise.
𝐷thr Defective pixel detection threshold, 𝐷thr ∈ [0, 1].
𝐸k Spectral power distribution (SPD) of display subpixels, k ∈ {R,G,B}.
F Fourier transform.
𝑔 Camera gain.
g Camera pixel coordinates in undistorted images, with the image center as the origin; x-axis pointing right, y-axis pointing upward.
𝐺 Wiener filter.
ℎ Coordinate mapping of the homography transformation, ℎ : s → g.
H Homography matrix.
𝑖 Each RAW exposure in HDR image stack.
I RAW (digital) sensor values captured by the camera, represented as a matrix of linear values.
𝐽 Jacobian matrix used in the uncertainty propgation for display with more than three subpixels.
k Display subpixels, k ∈ {R,G,B}.
𝑘𝑐 Camera quantum efficiency of camera color channels.
L𝑀 Clean scene radiance (result of MTF inversion).
L𝑉 Result of vignetting correction.
L𝐷 Result of geometric transformation.
ℓ Log-likelihood function.
𝑚 Global coordinate mapping of the geometric transformation,𝑚 : s → p.
𝑀 (𝝎 ) Modulation transfer function (MTF).
Mb Background mean map in the defective pixel detection experiment.
Mp Mean (pixel surrounding) map in the defective pixel detection experiment.
M Color correction matrix for display with three subpixels.
M Color correction matrix for display with more than three subpixels.
𝑁 Total number of RAW images in the HDR image stack.
𝑁 (.) (𝝎 ) The power spectral densities (PSD) of the noise.
N(.) (p) Noise component of the variable (zero mean).
𝑜 Display pixel oversampling factor.
p Camera pixel coordinates in RAW images, with the image center as the origin; x-axis pointing right, y-axis pointing upward.
𝑃k Linearized display subpixel value, k ∈ {R,G,B}.
𝑃 Camera point spread function (PSF).
s Display pixel coordinates in Display panel, with the display center as the origin; x-axis pointing right, y-axis pointing upward.
𝑆 (.) (𝝎 ) The power spectral densities (PSD) of the signal.
S(.) (p) Signal component of the variable (zero variance).
S̄ The CIE 1931 standard observer color matching functions (CMFs).
𝑡 Camera exposure time, in seconds (s).
𝑢 Coordinate mapping of the geometric undistortion, 𝑢 : g → p.
V Vignetting function.
𝑥 A single measurement of X.
X Relative radiance, an intermediate variable for computing Ψ.
Y Result of color correction, in XYZ color space.
𝜖 Noise in Vignetting correction.
𝜂 Noise in MTF inversion.
𝜆 The wavelength.
𝜇 (.) Mean of the normal distribution.
𝜎2
(.) Variance of the normal distribution.

Σ (.) Covariance matrix of the multivariate normal distribution.
𝜎2

adc Camera analog-to-digital conversion noise (ADC noise).
𝜎2

read Camera read noise.
Ψ Scene radiance, the reconstruction target in the HDR image stack merging section.
𝝎 Spatial frequency in cycles-per-pixel.
Pois Poisson distribution.
N Normal distribution.
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Table S2. The fitted parameters.

Part Parameters

Noise Model
𝑘𝑐 = [1.303514, 0.713188, 1.307612],

𝜎2
read = [1.733335, 2.074783, 1.643126],
𝜎2

adc = [1.595734, 2.021769, 1.506513]

MTF
𝑎1 = 0.00174, 𝑏1 = 0.67193, 𝑐1 = 0.12362,
𝑎2 = 1.30353, 𝑏2 = -0.11405, 𝑐2 = 0.22962

Decompose each component into the sum of signal and noise:

F
(
SL̂′𝑀

𝑐
+ NL̂′𝑀

𝑐

)
(𝝎) =

(
F

(
SΨ̂′

𝑐
+ NΨ̂′

𝑐

)
𝐺

)
(𝝎) . (S14)

Due to the linearity of the Fourier transform:

F
(
NL̂′𝑀

𝑐

)
(𝝎) =

(
F

(
NΨ̂′

𝑐

)
𝐺

)
(𝝎) . (S15)

Therefore, the PSD of the noise components of L̂′𝑀𝑐 are:

𝑁L̂′𝑀
𝑐

(𝝎) =
���F (

NL̂′𝑀
𝑐

)
(𝝎)

���2 =

���F (
NΨ̂′

𝑐

)
(𝝎)𝐺 (𝝎)

���2
=

���F (
NΨ̂′

𝑐

)
(𝝎)

���2 |𝐺 (𝝎) |2 = 𝑁Ψ̂′
𝑐
(𝝎) |𝐺 (𝝎) |2

. (S16)

By the Wiener–Khinchin theorem, the autocorrelation function
𝑅

(
𝜏𝑥 , 𝜏𝑦

)
(𝜏𝑥 ,𝜏𝑦 are spatial shifts) of a wide-sense stationary random

process (assumption (3)) and its PSD𝑁 (𝝎) form a Fourier transform
pair:

𝑅
(
𝜏𝑥 , 𝜏𝑦

)
= F −1 (𝑁 (𝝎)) . (S17)

Since the noise N is a zero-mean stochastic process, we have:

𝜎2
L̂𝑀𝑐

(p) ≈ 𝑅L̂′𝑀
𝑐

(0, 0) =
∬

𝑁L̂′𝑀
𝑐

(𝝎) 𝑑𝝎, (S18)

where second equals sign follows the definition of the inverse
Fourier transform. Under the Ψ̂𝑐 white noise assumption:

𝑁Ψ̂′
𝑐
(𝝎) ≈ 𝜎2

Ψ̂𝑐

(p), (S19)

considering Eq. (S16) and Eq. (S18), we have:

𝜎2
L̂𝑀𝑐

(p) ≈
∬

𝑁L̂′𝑀
𝑐

(𝝎) 𝑑𝝎 ≈ 𝜎2
Ψ̂′
𝑐

(p)
∬

|𝐺 (𝝎) |2 𝑑𝝎 . (S20)

The ≈ is used because the derivation relies on the three aforemen-
tioned assumptions. The accuracy is validated via Monte Carlo
simulations in Section M4.2 in main text.

S2 COLOR CORRECTION FOR 4+ PRIMARIES
We derived the color correction method for three-primary displays
(RGB subpixels) in the main text. However, some advanced displays
aiming for HDR and wide color gamut utilize more than three pri-
maries—for example, OLED displays include an additional white
subpixel. This section presents the derivation of the mean and vari-
ance for color correction in displays with four or more subpixels.

The radiance L̂𝐷𝑐 recorded by the camera for a single display pixel
is:

L̂𝐷𝑐 =
∑︁
k

𝑃k

∫
𝜆

𝐸k (𝜆)𝐶𝑐 (𝜆)𝑑𝜆, (S21)

where 𝜆 is the wavelength, 𝐸k (𝜆) is the spectral power distribution
(SPD) of subpixel k ∈ {R,G,B} at unit intensity, 𝑃k is the linearized
subpixel value, and𝐶𝑐 (𝜆) denotes the spectral sensitivity of camera
channel 𝑐 ∈ {r, g, b}.
Similarly, the trichromatic CIE XYZ value (related to cone re-

sponses) can be expressed as:

Y =
∑︁
k

𝑃k

∫
𝜆

𝐸k (𝜆)S̄(𝜆)𝑑𝜆, (S22)

where Y = [𝑋,𝑌, 𝑍 ]′ and S̄(𝜆) = [𝑥 (𝜆), 𝑦 (𝜆), 𝑧 (𝜆)]⊤ are the CIE
1931 standard observer color matching functions (CMFs).

For a display with three color subpixels, there exists a unique
transformation matrix M ∈ R3×3 1 such that:

Ŷ(s) = ML̂𝐷 (s). (S23)
However, advanced OLED displays employ four subpixels (R, G, B,

W) with complex driving mechanisms [Ashraf et al. 2024], allowing
only an approximate transformation matrix to be derived. To im-
prove color correction accuracy, we employed the root polynomial
regression method [Finlayson et al. 2015], which extends L𝐷 to

L𝐷 (s) =
[
L𝐷r , L

𝐷
g , L

𝐷
b ,

√︃
L𝐷r L𝐷g ,

√︃
L𝐷r L𝐷b ,

√︃
L𝐷g L𝐷b

]⊤
(s), (S24)

and fitted a transformation matrixM ∈ R3×6 such that:
Ŷ(s) = ML𝐷 (s) , 𝜇Ŷ (s) = M 𝜇L̂𝐷 (s). (S25)

To estimate uncertainty, we need to model covariance as the color
channels are no longer independent. For the display with more
than three primaries, we have used root polynomial regression, and
thus apply a first-order Taylor approximation (i.e., Jacobian matrix
method) to propagate uncertainty. The Jacobian matrix 𝐽 ∈ R6×3

obtained from the root polynomial regression method is:

𝐽 =
𝜕L𝐷 (s)

𝜕

(
L𝐷r (s), L𝐷g (s), L𝐷b (s)

) , 𝐽𝑖 𝑗 =

𝜕

(
L𝐷

)
𝑖
(s)

𝜕
(
L𝐷

)
𝑗 (s)

. (S26)

The covariance matrix of L𝐷 and color-corrected result Y are:
ΣL̂𝐷 (s) = 𝐽ΣL̂𝐷 (s) 𝐽⊤ (S27)

ΣŶ (s) = MΣL̂𝐷 (s)M⊤ = M 𝐽ΣL̂𝐷 (s) 𝐽⊤M⊤, (S28)
where Σ (.) is the covariance matrix.
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